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concore

concore is a C++ library that aims to raise the abstraction level when designing concurrent programs. It allows the user
to build complex concurrent programs without the need of (blocking) synchronization primitives. Instead, it allows
the user to “describe” the existing concurrency, pushing the planning and execution at the library level.

We strongly believe that the user should focus on describing the concurrency, not fighting synchronization problems.

The library also aims at building highly efficient applications, by trying to maximize the throughput.

concore is built around the concept of tasks. A task is an independent unit of work. Tasks can then be executed by
so-called executors. With these two main concepts, users can construct complex concurrent applications that are safe
and efficient.

concore concurrency core

variation on concord – agreement or harmony between people threads or groups (of threads); a chord that is
pleasing or satisfactory in itself.
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1.1 Quick-start

1.1.1 Building the library

The following tools are needed:

• conan

• CMake

Perform the following actions:

mkdir -p build
pushd build

conan install .. --build=missing -s build_type=Release

cmake -G<gen> -D CMAKE_BUILD_TYPE=Release -D concore.testing=ON ..
cmake --build .

popd build

Here, <gen> can be Ninja, make, XCode, "Visual Studio 15 Win64", etc.

1.1.2 Tutorial

TODO

1.1.3 Examples

TODO

3
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1.2 Concepts

Overview of main concepts:

1.2.1 Building concurrent applications with concore

Traditionally, applications are using manually specified threads and manual synchronization to support concurrency.
With many occasions this method has been proven to have a set of limitations:

• performance is suboptimal due to synchronization

• understandability is compromised

• thread-safety is often a major issue

• composability is not achieved

concore aims at alleviating these issues by implementing a Task-Oriented Design model for expressing concurrent
applications. Instead of focusing on manual creation of threads and solving synchronization issues, the user should
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focus on decomposing the application into smaller units of work that can be executed in parallel. If the decomposition
is done correctly, the synchronization problems will disappear. Also, assuming there is enough work, the perfor-
mance of the application can be close-to-optimal (considering throughput). Understandability is also improved as the
concurrency is directly visible at the design level.

The main focus of this model is on the design. The users should focus on the design of the concurrent application,
and leave the threading concerns to the concore library. This way, building good concurrent applications becomes a
far easier job.

Proper design should have two main aspects in mind:

1. the total work needs to be divided into manageable units of work

2. proper constraints need to be placed between these units of work

concore have tools to help with both of these aspects.

For breaking down the total work, there are the following rules of thumb:

• at any time there should be enough unit of works that can be executed; if one has N cores on the target system
the application should have 2*N units of works ready for execution

• too many units of execution can make the application spend too much time in bookkeeping; i.e., don’t create
thousands or millions of units of work upfront.

• if the units of work are too small, the overhead of the library can have a higher impact on performance

• if the units of work are too large, the scheduling may be suboptimal

• in practice, a good rule of thumb is to keep as much as possible the tasks between 10ms to 1 second – but this
depends a lot on the type of application being built

For placing the constraints, the user should plan what types of work units can be executed in parallel to what other
work units. concore then provides several features to help managing the constraints.

If these are followed, fast, safe and clean concurrent applications can be built with relatively low effort.

1.2.2 Tasks

Instead of using the generic term work, concore prefers to use the term task defined the following way:

task An independent unit of work

The definition of task adds emphasis on two aspects of the work: to be a unit of work, and to be independent.

We use the term unit of work instead of work to denote an appropriate division of the entire work. As the above rules
of thumb stated, the work should not be too small and should not be too big. It should be at the right size, such as
dividing it any further will not bring any benefits. Also, the size of a task can be influenced by the relations that it
needs to have with other tasks in the application.

The independent aspect of the tasks refers to the context of the execution of the work, and the relations with other tasks.
Given two tasks A and B, there can be no constraints between the two tasks, or there can be some kind of execution
constraints (e.g., “A needs to be executed before B”, “A needs to be executed after B”, “A cannot be executed in parallel
with B”, etc.). If there are no explicit constraints for a task, or if the existing constraints are satisfied at execution time,
then the execution of the task should be safe, and not produce undefined behavior. That is, an independent unit of
work should not depend on anything else but the constraints that are recognized at design time.

Please note that the independence of tasks is heavily dependent on design choices, and maybe less on the internals of
the work contained in the tasks.

Let us take an example. Let’s assume that we have an application with a central data storage. This central data storage
has 3 zones with information that can be read or written: Z1, Z2 and Z3. One can have tasks that read data, tasks that
write data, and tasks that both read and write data. These operations can be specific to a zone or multiple zones in the
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central data storage. We want to create a task for each of these operations. Then, at design time, we want to impose
the following constraints:

• No two tasks that write in the same zone of the data storage can be executed in parallel.

• A task that writes in a zone cannot be executed in parallel with a task that reads from the same zone.

• A task that reads from a zone can be executed in parallel with another task that reads from the same zone (if
other rules don’t prevent it)

• Tasks in any other combination can be safely executed in parallel

These rules mean that we can execute the following four tasks in parallel: READ(Z1), READ(Z1, Z3), WRITE(Z2),
READ(Z3). On the other hand, task READ(Z1, Z3) cannot be executed in parallel with WRITE(Z3).

Graphically, we can represent these constraints with lines in a graph that looks like the following:

One can check by looking at the figure what are all the constraints between these tasks.

In general, just like we did with the example above, one can define the constraints in two ways: synthetically (by rules)
or by enumerating all the legal/illegal combinations.

In code, concore models the tasks by using the concore::v1::task class. They can be constructed using arbitrary
work, given in the form of a std::function<void()>.

1.2.3 Executors

Creating tasks is just declaring the work that needs to be done. There needs to be a way of executing the tasks. In
concore, this is done through the executors.

executor An abstraction that takes a task and schedules its execution, typically at a later time, and maybe with certain
constraints.

Concore has defined the following executors:

• global_executor

• global_executor_critical_prio

• global_executor_high_prio

• global_executor_normal_prio

• global_executor_low_prio

• global_executor_background_prio
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• spawn_executor

• spawn_continuation_executor

• immediate_executor

• dispatch_executor

• tbb_executor

An executor can always be stored into a executor_t (which is an alias for std::function<void(task)>).
In other words, an executor can be thought of as objects that consume tasks.

For most of the cases, using a global_executor is the right choice. This will add the task to a global queue from
which concore’s worker threads will extract and execute tasks.

Another popular alternative is to use the spawn functionality (either as a free function spawn(), or through
spawn_executor). This should be called from within the execution of a task and will add the given task to
the local queue of the current worker thread; the thread will try to pick up the last task with priority. If using
global_executor favors fairness, spawn() favors locality.

Using tasks and executors will allow users to build concurrent programs without worrying about threads and synchro-
nization. But, they would still have to manage constraints and dependencies between the tasks manually. concore
offers some features to ease this job.

1.2.4 Task graphs

Without properly applying constraints between tasks the application will have thread-safety issues. One needs to
properly set up the constraints before enqueueing tasks to be executed. One simple way of adding constraints is to
add dependencies; that is, to say that certain tasks need to be executed before other tasks. If we chose the encode
the application with dependencies the application becomes a directed acyclic graph. For all types of applications, this
organization of tasks is possible and it’s safe.

Here is an example of how a graph of tasks can look like:
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Two tasks that don’t have a path between them can be executed in parallel.

This graph, as well as any other graph, can be built manually while executing it. One strategy for building the graph is
the following:

• tasks that don’t have any predecessors or for which all predecessors are completely executed can be enqueued
for execution

• tasks that have predecessors that are not run should not be scheduled for execution

• with each completion of a task, other tasks may become candidates for execution: enqueue them

• as the graph is acyclic, in the end, all the tasks in the graph will be executed

Another way of building task graph is to use concore’s abstractions. The nodes in the graph can be modeled with
chained_task objects. Dependencies can be calling add_dependency() of add_dependencies() func-
tions.
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1.2.5 Serializers

Another way of constructing sound concurrent applications is to apply certain execution patterns for areas in the
application that can lead to race conditions. This is analogous to adding mutexes, read-write mutexes, and semaphores
in traditional multi-threaded applications.

In the world of tasks, the analogous of a mutex would be a serializer. This behaves like an executor. One can
enqueue tasks into it, and they would be serialized, i.e., executed one at a time.

For example, it can turn 5 arbitrary tasks that are enqueued roughly at the same time into something for which the
execution looks like:

A serializer will have a waiting list, in which it keeps the tasks that are enqueued while there are tasks that are in
execution. As soon as a serializer task finishes a new task is picked up.

Similar to a serializer, is an n_serializer. This corresponds to a semaphore. Instead of allowing only one
task to be executing at a given time, this allows N tasks to be executed at a given time, but not more.

Finally, corresponding to a read-write mutex, concore offers rw_serializer. This is not an executor, but a pair of
two executors: one for READ tasks and one for WRITE tasks. The main idea is that the tasks are scheduled such as the
following constraints are satisfied:

• no two WRITE tasks can be executed at the same time

• a WRITE task and a READ tasks cannot be executed at the same time

• multiple READ tasks can be executed at the same time, in the absence of WRITE tasks

As working with mutexes, read-write mutexes and semaphores in the traditional multi-threaded applications are cover-
ing most of the synchronization cases, the serializer, rw_serializer and n_serializer concepts should
also cover a large variety of constraints between the tasks.

1.2.6 Others

Manually creating constraints

One doesn’t need concore features like task graphs or serializers to add constraints between the tasks. They can easily
be added on top of the existing tasks by some logic at the end of each task.

First, a constraint is something that acts to prevent some tasks to be executed while other tasks are executed. So, most
of our logic is added to prevent tasks from executing.

To simplify things, we assume that a task starts executing immediately after it is enqueued; in practice, this does
not always happen. Although one can say that implementing constraints based on this assumption is suboptimal, in
practice it’s not that bad. The assumption is not true when the system is busy; then, the difference between enqueue
time and execution time is not something that will degrade the throughput.

Finally, at any point in time we can divide the tasks to be executed in an application in three categories:

1. tasks that can be executed right away; i.e., tasks without constraints

2. tasks that can be executed right away, but they do have constraints with other tasks in this category; i.e., two
tasks that want to WRITE at the same memory location, any of them can be executed, but not both of them
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3. tasks for which the constraints prevent them to be executed at the current moment; i.e., tasks that depend on
other tasks that are not yet finished executing

At any given point, the application can enqueue tasks from the first category, and some tasks from the second category.
Enqueueing tasks from the second category must be done atomically with the check of the constraint; also, other tasks
that are related to the constraint must be prevented to be enqueued, as part of the same atomic operation.

While the tasks are running without any tasks completing, or starting, the constraints do not change – we set the
constraints between tasks, not between parts of tasks. That is, there is no interest for us to do anything while the
system is in steady-state executing tasks. Whenever a new task is created, or whenever we complete a task we need to
consider if we can start executing a task, and which one can we execute. At those points, we should evaluate the state
of the system to see which tasks belong to the first two categories. Having the tasks placed in these 3 categories we
know which tasks can start executing right away – and we can enqueue these in the system.

If the constraints of the tasks are properly set up, i.e., we don’t have circular dependencies, then we are guaranteed to
make progress eventually. If we have enough tasks from the first two categories, then we can make progress at each
step.

Based on the above description it can be assumed that one needs to evaluate all tasks in the system at every step.
That would obviously not be efficient. But, in practice, this can easily be avoided. Tasks don’t necessarily need to
sit in one big pool and be evaluated each time. They are typically stored in smaller data structures, corresponding to
different parts of the application. And, furthermore, most of the time is not needed to check all the tasks in a pool to
know which one can be started. In practice evaluating which tasks can be executed can be done really fast. See the
serializers above.

Task groups

Task groups can be used to control the execution of tasks, in a very primitive way. When creating a task, the user can
specify a concore::v1::task_group object, making the task belong to the task group object passed in.

Task groups are useful for canceling tasks. One can tell the task group to cancel, and all the tasks from the task group
are canceled. Tasks that haven’t started executed yet will not be executed. Tasks that are in progress can query the
cancel flag of the group and decide to finish early.

This is very useful in shutdown scenarios when one wants to cancel all the tasks that access an object that needs to
be destroyed. One can place all the tasks that operate on that object in a task group and cancel the task group before
destroying the object.

Another important feature of task groups is the ability to wait on all the tasks in the group to complete. This is also
required to the shutdown scenario above. concore does not block the thread while waiting; instead, it tries to execute
tasks while waiting. The hope is to help in getting the tasks from the arena done faster.

Note that, while waiting on a group, tasks outside of the group can be executed. That can also mean that waiting takes
more time than it needs to. The overall goal of maximizing throughput is still maintained.

Details on the task system

This section briefly describes the most important implementation details of the task system. Understanding these
implementation details can help in creating more efficient applications.

If the processor on which the application is run has N cores, then concore creates N worker threads. Each of these
worker threads has a local list of tasks to be executed can execute one task at a given time. That is, the library can only
execute a maximum of N tasks at the same time. Increasing the number of tasks in parallel will typically not increase
the performance, but on the contrary, it can decrease it.

Besides the local list of tasks for each worker, there is a global queue of tasks. Whenever a task is enqueued with
global_executor it will reach in this queue. Tasks in this queue will be executed by any of the workers. They
are extracted by the workers in the order in which they are enqueued – this maintains fairness for task execution.
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If, from inside a worker thread one calls spawn() with a task, that task will be added to the local list of tasks
corresponding to the current worker thread. This list of tasks behaves like a stack: last-in-first-out. This way, the local
task lists aim to improve locality, as it’s assumed that the latest tasks added are closer to the current tasks.

A worker thread favors tasks from the local task list to tasks from the global queue. Whenever the local list runs out
of tasks, the worker thread tries to get tasks from the central queue. If there are no tasks to get from the central queue,
the worker will try to steal tasks from other worker thread’s local list. If that fails too, the thread goes to sleep.

When stealing tasks from another worker, the worker is chosen in a round-robin fashion. Also, the first task in the
local list is extracted, that is, the furthest task from the currently executing task in that worker. This is also done like
that to improve locality.

So far we mentioned that there is only one global queue. There are in fact multiple global queues, one for each priority.
Tasks with higher priorities are extracted before the tasks with lower priority, regardless of the order in which they
came in.

All the operations related to task extraction are designed to be fast. The library does not traverse all the tasks when
choosing the next task to be executed.

1.3 API reference

1.3.1 Tasks

task.hpp

namespace concore

namespace v1

Typedefs

using task_function = std::function<void()>
A function type that is compatible with a task.

This function takes no arguments and returns nothing. It represents generic work.

A concore task is essentially a wrapper over a task_function.

See task

class task
#include <task.hpp> A task. Core abstraction for representing an independent unit of work.

A task can be enqueued into an executor and executed at a later time. That is, this represents work
that can be scheduled.

Tasks have move-only semantics, and disable copy semantics. Also, the library prefers to move
tasks around instead of using shared references to the task. That means that, after construction and
initialization, once passed to an executor, the task cannot be modified.

It is assumed that a task can only be executed once.

Ensuring correctness when working with tasks

Within the independent unit of work definition, the word independent is crucial. It is the one that
guarantees thread-safety of the applications relying on tasks to represent concurrency.
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A task needs to be independent, meaning that it must not be run in parallel with other tasks that
touch the same data (and one of them is writing). In other words, it enforces no data races, and no
corruptions (in this context data races have the negative effect and they represent undefined behavior).

Please note that this does not say that there can’t be two tasks that touch the same data (and one of
them is writing). It says that if we have such case we need to ensure that these tasks are not running
in parallel. In other words, one need to apply constraints on these tasks to ensure that they re not run
in parallel.

If constraints are added on the tasks ensuring that there are no two conflicting tasks that run in parallel,
then we can achieve concurrency without data races.

At the level of task object, there is no explicit way of adding constraints on the tasks. The constraints
can be added on top of tasks. See chained_task and serializer.

task_function and task_group

A task is essentially a pair of a task_function an a task_group. The task_function part
offers storage for the work associated with the task. The task_group part offers a way of controlling
the task execution.

One or most tasks can belong to a task_group. To add a task to an existing task_group pass the
task_group object to the constructor of the task object. By using a task_group the user can tell the
system to cancel the execution of all the tasks that belong to the task_group. It can also implement
logic that depends on the the task_group having no tasks attached to it.

See task_function, task_group, chained_task, serializer

Public Functions

task()
Default constructor.

Brings the task into a valid state. The task has no action to be executed, and does not belong to
any task group.

template<typename T>
task(T &&ftor)

Constructs a new task given a functor.

When the task will be executed, the given functor will be called. This typically happens on a
different thread than this constructor is called.
Parameters

• ftor: The functor to be called when executing task.
Template Parameters

• T: The type of the functor. Must be compatible with task_function.
To be assumed that the functor will be called at a later time. All the resources needed by the
functor must be valid at that time.

template<typename T>
task(T &&ftor, task_group grp)

Constructs a new task given a functor and a task group.

When the task will be executed, the given functor will be called. This typically happens on a
different thread than this constructor is called.
Parameters

• ftor: The functor to be called when executing task.
• grp: The task group to place the task in the group.

Template Parameters
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• T: The type of the functor. Must be compatible with task_function.
To be assumed that the functor will be called at a later time. All the resources needed by the
functor must be valid at that time.

Through the given group one can cancel the execution of the task, and check (indirectly) when
the task is complete.

See get_task_group()

template<typename T>
task &operator=(T &&ftor)

Assignment operator from a functor.

This can be used to change the task function inside the task.
Return The result of the assignment
Parameters

• ftor: The functor to be called when executing task.
Template Parameters

• T: The type of the functor. Must be compatible with task_function.

task(task&&)
Move constructor.

task &operator=(task&&)
Move operator.

task(const task&)
Copy constructor is DISABLED.

task &operator=(const task&)
Copy assignment operator is DISABLED.

void swap(task &other)
Swap the content of the task with another task.

Parameters
• other: The other task

operator bool() const
Bool conversion operator.

Indicates if a valid functor is set into the tasks, i.e., if there is anything to be executed.

void operator()()
Function call operator; performs the action stored in the task.

This is called by the execution engine whenever the task is ready to be executed. It will call the
functor stored in the task.

The functor can throw, and the execution system is responsible for catching the exception and
ensuring its properly propagated to the user.

This is typically called after some time has passed since task creation. The user must ensure that
the functor stored in the task is safe to be executed at that point.

task_group &get_task_group()
Gets the task group.

This allows the users to consult the task group associated with the task and change it.
Return The task group, as a reference.
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Private Members

task_function fun_
The function to be called.

This can be associated with a task through construction and by using the special assignment
operator.

Please note that, as the tasks cannot be copied and shared, and as the task system prefers moving
tasks, after the task is enqueued this is constant.

task_group task_group_
The group that this tasks belongs to.

This can be set by the constructor, or can be set by calling get_task_group(). As the library
prefers passing tasks around by moving them, after the task was enqueued, the task group cannot
be changed.

task_group.hpp

namespace concore

namespace v1

class task_group
#include <task_group.hpp> Used to control a group of tasks (cancellation, waiting, exceptions).

Tasks can point to one task_group object. A task_group object can point to a parent task_group object,
thus creating hierarchies of task_group objects.

task_group implements shared-copy semantics. If one makes a copy of a task_group object, the
actual value of the task_group will be shared. For example, if we cancel one task_group, the second
task_group is also canceled. concore takes advantage of this type of semantics and takes all task_group
objects by copy, while the content is shared.

Scenario 1: cancellation User can tell a task_group object to cancel the tasks. After this, any tasks
that use this task_group object will not be executed anymore. Tasks that are in progress at the moment
of cancellation are not by default canceled. Instead, they can check from time to time whether the task
is canceled.

If a parent task_group is canceled, all the tasks belonging to the children task_group objects are
canceled.

Scenario 2: waiting for tasks A task_group object can be queried to check if all the tasks in a
task_group are done executing. Actually, we are checking whether they are still active (the distinction
is small, but can be important in some cases). Whenever all the tasks are done executing (they don’t
reference the task_group anymore) then the task_group object can tell that. One can easily query this.

Also, one can spawn a certain number of tasks, associating a task_group object with them and wait
for all these tasks to be completed by waiting on the task_group object. This is an active wait: the
thread tries to execute tasks while waiting (with the idea that it will try to speed up the completion of
the tasks) the waiting algorithm can vary based on other factors.

Scenario 3: Exception handling One can set an exception handler to the task_group. If a task throws
an exception, and the associated task_group has a handler set, then the handler will be called. This can
be useful to keep track of exceptions thrown by tasks. For example, one might want to add logging
for thrown exceptions.
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See task

Public Functions

task_group()
Default constructor.

Creates an empty, invalid task_group. No operations can be called on it. This is used to mark the
absence of a real task_group.

See create()

~task_group()
Destructor.

task_group(const task_group&)
Copy constructor.

Creates a shared-copy of this object. The new object and the old one will share the same imple-
mentation data.

task_group(task_group&&)
Move constructor; rarely used.

task_group &operator=(const task_group&)
Assignment operator.

Creates a shared-copy of this object. The new object and the old one will share the same imple-
mentation data.
Return The result of the assignment

task_group &operator=(task_group&&)
Move assignment; rarely used.

operator bool() const
Checks if this is a valid task group object.

Returns true if this object was created by create() or if it’s a copy of an object created by calling
create().

Such an object is valid, and operations can be made on it. Tasks will register into it and they can
be influenced by the task_group object.

An object for which this returns false is considered invalid. It indicates the absence of a real
task_group object.

See create(), task_group()

void set_exception_handler(std::function<void)std::exception_ptr
> except_funSet the function to be called whenever an exception is thrown by a task.

On execution, tasks can throw exceptions. If tasks have an associated task_group, one can use
this function to register an exception handler that will be called for exceptions.
Parameters

• except_fun: The function to be called on exceptions
The given exception function will be called each time a new exception is thrown by a task be-
longing to this task_group object.

1.3. API reference 15
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void cancel()
Cancels the execution tasks in the group.

All tasks from this task group scheduled for execution that are not yet started are canceled they
won’t be executed anymore. If there are tasks of this group that are in execution, they can continue
execution until the end. However, they have ways to check if the task group is canceled, so that
they can stop prematurely.

Tasks that are added to the group after the group was canceled will be not executed.

To get rid of the cancellation, one can cal clear_cancel().

See clear_cancel(), is_cancelled()

void clear_cancel()
Clears the cancel flag; new tasks can be executed again.

This reverts the effect of calling cancel(). Tasks belonging to this group can be executed once
more after clear_clance() is called.

Note, once individual tasks were decided that are canceled and not executed, this clear_cancel()
cannot revert that. Those tasks will be forever not-executed.

See cancel(), is_cancelled()

bool is_cancelled() const
Checks if the tasks overseen by this object are canceled.

This will return true after cancel() is called, and false if clear_cancel() is called. If this return
true it means that tasks belonging to this group will not be executed.
Return True if the task group is canceled, False otherwise.
cancel(), clear_cancel()

bool is_active() const
Checks whether there are tasks or other task_group objects in this group.

This can be used to check when all tasks from a group are completed. Completed tasks are not
stored by the task system, nor by the executors, so they release the reference to this object. This
function returns true if no tasks refer to this group.
Return True if active, False otherwise.
For a newly created task_group, this will return false, as there are no tasks in it.

• TODO: Don’t count subgroups
• TODO: make it work hierarchically.

Public Static Functions

task_group create(const task_group &parent = {})
Creates a task_group object, with an optional parent.

As opposed to a default constructor, this creates a valid task_group object. Operations (canceling,
waiting) can be performed on objects created by this function.
Return The task group created.
Parameters

• parent: The parent of the task_group object (optional)
The optional parent parameter allows one to create hierarchies of task_group objects. A hier-
archy can be useful, for example, for canceling multiple groups of tasks all at once.

See task_group()
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task_group current_task_group()
Returns the task_group object for the current running task.

If there is no task running, this will return an empty (i.e., default-constructed) object. If there is a
running task on this thread, it will return the task_group object for the currently running task.
Return The task group associated with the current running task
The intent of this function is to be called from within running tasks.

This uses thread-local-storage to store the task_group of the current running task.

See is_current_task_cancelled(), task_group()

bool is_current_task_cancelled()
Determines if current task cancelled.

This should be called from within tasks to check if the task_group associated with the current
running task was cancelled.
Return True if current task cancelled, False otherwise.
The intent of this function is to be called from within running tasks.

See current_task_group()

Private Members

std::shared_ptr<detail::task_group_impl> impl_
Implementation detail of a task group object. Note that the implementation details can be shared
between multiple task_group objects.

spawn.hpp

namespace concore

namespace v1

Functions

void spawn(task &&t, bool wake_workers = true)
Spawns a task, hopefully in the current working thread.

This is intended to be called from within a task. In this case, the task will be added to the list of tasks
for the current worker thread. The tasks will be added in the front of the list, so it will be executed in
front of others.
Parameters

• t: The task to be spawned
• wake_workers: True if we should wake other workers for this task

The add-to-front strategy aims as improving locality of execution. We assume that this task is closer
to the current task than other tasks in the system.

If the current running task does not finish execution after spawning this new task, it’s advised for
the wake_workers parameter to be set to true. If, on the other hand, the current task finishes
execution after this, it may be best to not set wake_workers to false and thus try to wake other
threads. Waking up other threads can be an efficiency loss that we don’t need if we know that this
thread is finishing soon executing the current task.

1.3. API reference 17



concore

Note that the given task ca take a task_group at construction. This way, the users can control the
groups of the spawned tasks.

template<typename F>
void spawn(F &&ftor, bool wake_workers = true)

Spawn one task, given a functor to be executed.

This is similar to the spawn(task&&, bool) function, but it takes directly a functor instead of a task.
Parameters

• ftor: The ftor to be executed
• wake_workers: True if we should wake other workers for this task

Template Parameters
• F: The type of the functor

If the current task has a group associated, the new task will inherit that group.

See spawn(task&&, bool)

void spawn(std::initializer_list<task_function> &&ftors, bool wake_workers = true)
Spawn multiple tasks, given the functors to be executed.

This is similar to the other two spawn() functions, but it takes a series of functions to be executed.
Tasks will be created for all these functions and spawn accordingly.
Parameters

• ftors: A list of functors to be executed
• wake_workers: True if we should wake other workers for the last task

The wake_workers will control whether to wake threads for the last task or not. For the others
tasks, it is assumed that we always want to wake other workers to attempt to get as many tasks as
possible from the current worker task list.

If the current task has a task group associated, all the newly created tasks will inherit that group.

spawn(task&&, bool), spawn_and_wait()

template<typename F>
void spawn_and_wait(F &&ftor)

Spawn a task and wait for it.

This function is similar to the spawn() functions, but, after spawning, also waits for the spawned task
to complete. This wait is an active-wait, as it tries to execute other tasks. In principle, the current
thread executes the spawn task.
Parameters

• ftor: The functor of the tasks to be spawned
Template Parameters

• F: The type of the functor.
This will create a new task group, inheriting from the task group of the currently executing task and
add the new task in this new group. The waiting is done on this new group.

See spawn()

void spawn_and_wait(std::initializer_list<task_function> &&ftors, bool wake_workers = true)
Spawn multiple tasks and wait for them to complete.

This is used when a task needs multiple things done in parallel.
Parameters

• ftors: A list of functors to be executed
• wake_workers: True if we should wake other workers for the last task

This function is similar to the spawn() functions, but, after spawning, also waits for the spawned tasks
to complete. This wait is an active-wait, as it tries to execute other tasks. In principle, the current
thread executes the last of the spawned tasks.
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This will create a new task group, inheriting from the task group of the currently executing task and
add the new tasks in this new group. The waiting is done on this new group.

void wait(task_group &grp)
Wait on all the tasks in the given group to finish executing.

The wait here is an active-wait. This will execute tasks from the task system in the hope that the tasks
in the group are executed faster.
Parameters

• grp: The task group to wait on
Using this inside active tasks is not going to block the worker thread and thus not degrade performance.

Warning If one adds task in a group and never executes them, this function will block indefinitely.
See spawn(), spawn_and_wait()

Variables

constexpr auto spawn_executor = detail::spawn_executor{}
Executor that spawns tasks instead of enqueueing them. Similar to calling spawn() on the task.

See spawn(), spawn_continuation_executor, global_executor

constexpr auto spawn_continuation_executor = detail::spawn_continuation_executor{}
Executor that spawns tasks instead of enqueueing them, but not waking other workers. Similar to
calling spawn(task, false) on the task.

See spawn(), spawn_executor, global_executor

task_graph.hpp

namespace concore

namespace v1

Functions

void add_dependency(chained_task prev, chained_task next)
Add a dependency between two tasks.

This creates a dependency between the given tasks. It means that next will only be executed only
after prev is completed.
Parameters

• prev: The task dependent on
• next: The task that depends on prev

See chained_task, add_dependencies()

void add_dependencies(chained_task prev, std::initializer_list<chained_task> nexts)
Add a dependency from a task to a list of tasks.

This creates dependencies between prev and all the tasks in nexts. It’s like calling
add_dependency() multiple times.
Parameters

• prev: The task dependent on
• nexts: A set of tasks that all depend on prev
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All the tasks in the nexts lists will not be started until prev is completed.

See chained_task, add_dependency()

void add_dependencies(std::initializer_list<chained_task> prevs, chained_task next)
Add a dependency from list of tasks to a tasks.

This creates dependencies between all the tasks from prevs to the next task. It’s like calling
add_dependenc() multiple times.
Parameters

• prevs: The list of tasks that next is dependent on
• next: The task that depends on all the prevs tasks

The next tasks will not start until all the tasks from the prevs list are complete.

See chained_task, add_dependency()

class chained_task
#include <task_graph.hpp> A type of tasks that can be chained with other such tasks to create graphs
of tasks.

This is a wrapper on top of a task, and cannot be directly interchanged with a task. This can directly
enqueue the encapsulated task, and also, one can create a task on top of this one (as this defines the
call operator, and it’s also a functor).

One can create multiple chained_task objects, then call add_dependency() oradd_dependencies()
to create dependencies between such task objects. Thus, one can create graphs of tasks from
chained_task objects.

The built graph must be acyclic. Cyclic graphs can lead to execution stalls.

After building the graph, the user should manually start the execution of the graph by enqueueing a
chained_task that has no predecessors. After completion, this will try to enqueue follow-up tasks, and
so on, until all the graph is completely executed.

A chained task will be executed only after all the predecessors have been executed. If a task has three
predecessors it will be executed only when the last predecessor completes. Looking from the opposite
direction, at the end of the task, the successors are checked; the number of active predecessors is
decremented, and, if one drops to zero, that successor will be enqueued.

The chained_task can be configured with an executor this will be used when enqueueing successor
tasks.

If a task throws an exception, the handler in the associated task_group is called (if set) and the exe-
cution of the graph will continue. Similarly, if a task from the graph is canceled, the execution of the
graph will continue as if the task wasn’t supposed to do anything.

See task, add_dependency(), add_dependencies(), task_group

Public Functions

chained_task()
Default constructor. Constructs an invalid chained_task. Such a task cannot be placed in a graph
of tasks.

chained_task(task t, executor_t executor)
Constructor.

This will initialize a valid chained_task. After this constructor, add_dependency() and
add_dependencies() can be called to add predecessors and successors of this task.
Parameters
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• t: The task to be executed
• executor: The executor to be used for the successor tasks

If this tasks tries to start executing successor tasks it will use the given executor.

See add_dependency(), add_dependencies(), task

void operator()()
The call operator.

This will be called when executing the chained_task. It will execute the task received on con-
structor and then will check if it needs to start executing successors it will try to start executing
the successors that don’t have any other active predecessors.

This will use the executor given at construction to start successor tasks.

Private Members

std::shared_ptr<detail::chained_task_impl> impl_

Friends

void add_dependency(chained_task prev, chained_task next)
Add a dependency between two tasks.

This creates a dependency between the given tasks. It means that next will only be executed
only after prev is completed.
Parameters

• prev: The task dependent on
• next: The task that depends on prev

See chained_task, add_dependencies()

void add_dependencies(chained_task prev, std::initializer_list<chained_task> nexts)
Add a dependency from a task to a list of tasks.

This creates dependencies between prev and all the tasks in nexts. It’s like calling
add_dependency() multiple times.
Parameters

• prev: The task dependent on
• nexts: A set of tasks that all depend on prev

All the tasks in the nexts lists will not be started until prev is completed.

See chained_task, add_dependency()

void add_dependencies(std::initializer_list<chained_task> prevs, chained_task next)
Add a dependency from list of tasks to a tasks.

This creates dependencies between all the tasks from prevs to the next task. It’s like calling
add_dependenc() multiple times.
Parameters

• prevs: The list of tasks that next is dependent on
• next: The task that depends on all the prevs tasks

The next tasks will not start until all the tasks from the prevs list are complete.

See chained_task, add_dependency()
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1.3.2 Executors

executor_type.hpp

namespace concore

Typedefs

using executor_t = std::function<void(task)>
Generic executor type.

This is a type-erasure, allowing all executor types to be stored and manipulated.

An executor is an abstraction that takes a task and schedules its execution, typically at a later time, and
maybe with certain constraints.

It is assumed that multiple tasks/threads can call the executor at the same time to enqueue tasks with it.

See global_executor, immediate_executor, serializer

global_executor.hpp

namespace concore

namespace v1

Variables

constexpr auto global_executor = detail::executor_with_prio<detail::task_priority::normal>{}
The default global executor.

This is an executor that passes the tasks directly to concore’s task system. Whenever there is a core
available, the task is executed.

Is is the default executor.

The tasks enqueued here are considered to have the priority “normal”.

See global_executor_critical_prio, global_executor_high_prio, global_executor_normal_prio,
global_executor_low_prio, global_executor_background_prio

constexpr auto global_executor_critical_prio = detail::executor_with_prio<detail::task_priority::critical>{}
Task executor that enqueues tasks with critical priority.

Similar to global_executor, but the task is considered to have the critical priority. Tasks with critical
priority take precedence over all other types of tasks in the task system.

See global_executor, global_executor_high_prio, global_executor_normal_prio,
global_executor_low_prio, global_executor_background_prio

constexpr auto global_executor_high_prio = detail::executor_with_prio<detail::task_priority::high>{}
Task executor that enqueues tasks with high priority.

Similar to global_executor, but the task is considered to have the high priority. Tasks with high priority
take precedence over normal priority tasks.
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See global_executor, global_executor_critical_prio, global_executor_normal_prio,
global_executor_low_prio, global_executor_background_prio

constexpr auto global_executor_normal_prio = detail::executor_with_prio<detail::task_priority::normal>{}
Task executor that enqueues tasks with normal priority.

Same as global_executor.

See global_executor, global_executor_critical_prio, global_executor_high_prio,
global_executor_low_prio, global_executor_background_prio

constexpr auto global_executor_low_prio = detail::executor_with_prio<detail::task_priority::low>{}
Task executor that enqueues tasks with low priority.

Similar to global_executor, but the task is considered to have the low priority. Tasks with low priority
are executed after tasks of normal priority.

See global_executor, global_executor_critical_prio, global_executor_high_prio,
global_executor_normal_prio, global_executor_background_prio

constexpr auto global_executor_background_prio = detail::executor_with_prio<detail::task_priority::background>{}
Task executor that enqueues tasks with background priority.

Similar to global_executor, but the task is considered to have the background priority. Tasks with
background are executed after all the other tasks in the system

See global_executor, global_executor_critical_prio, global_executor_high_prio,
global_executor_normal_prio, global_executor_low_prio

immediate_executor.hpp

namespace concore

namespace v1

Variables

constexpr auto immediate_executor = detail::immediate_executor_type{}
Executor that executes all the tasks immediately.

Most executors are storing the tasks for later execution and the enqueueing finishes very fast. This
one executes the task during enqueueing, without scheduling it for a later time.

dispatch_executor.hpp

namespace concore

namespace v1
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Variables

constexpr auto dispatch_executor = detail::disp::executor_with_prio<detail::disp::task_priority::normal>{}
Executor that enqueues task in libdispatch.

The tasks that are enqueued by this executor will have normal priority inside libdispatch.

This can be used as a bridge between concore and libdispatch.

See global_executor

constexpr auto dispatch_executor_high_prio = detail::disp::executor_with_prio<detail::disp::task_priority::high>{}
Task executor that enqueues tasks in libdispatch with high priority.

This can be used as a bridge between concore and libdispatch.

constexpr auto dispatch_executor_normal_prio = detail::disp::executor_with_prio<detail::disp::task_priority::normal>{}
Task executor that enqueues tasks in libdispatch with normal priority.

Same as dispatch_executor.

This can be used as a bridge between concore and libdispatch.

constexpr auto dispatch_executor_low_prio = detail::disp::executor_with_prio<detail::disp::task_priority::low>{}
Task executor that enqueues tasks in libdispatch with low priority.

This can be used as a bridge between concore and libdispatch.

tbb_executor.hpp

namespace concore

namespace v1

Variables

constexpr auto tbb_executor = detail::tbb_d::executor_with_prio<detail::tbb_d::task_priority::normal>{}
Executor that enqueues task in TBB.

The tasks that are enqueued by this executor will have normal priority inside TBB.

This can be used as a bridge between concore and Intel TBB.

See global_executor

constexpr auto tbb_executor_high_prio = detail::tbb_d::executor_with_prio<detail::tbb_d::task_priority::high>{}
Task executor that enqueues tasks in TBB with high priority.

This can be used as a bridge between concore and Intel TBB.

constexpr auto tbb_executor_normal_prio = detail::tbb_d::executor_with_prio<detail::tbb_d::task_priority::normal>{}
Task executor that enqueues tasks in TBB with normal priority.

Same as tbb_executor.

This can be used as a bridge between concore and Intel TBB.

constexpr auto tbb_executor_low_prio = detail::tbb_d::executor_with_prio<detail::tbb_d::task_priority::low>{}
Task executor that enqueues tasks in TBB with low priority.

This can be used as a bridge between concore and Intel TBB.
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1.3.3 Serializers

serializer.hpp

namespace concore

namespace v1

class serializer
#include <serializer.hpp> Executor type that allows only one task to be executed at a given time.

If the main purpose of other executors is to define where and when tasks will be executed, the purpose
of this executor is to introduce constrains between the tasks enqueued into it.

Given N tasks to be executed, the serializer ensures that there are no two tasks executed in parallel.
It serializes the executions of this task. If a tasks starts executing all other tasks enqueued into the
serializer are put on hold. As soon as one task is completed a new task is scheduled for execution.

As this executor doesn’t know to schedule tasks for executor it relies on one or two given executors to
do the scheduling. If a base_executor is given, this will be the one used to schedule for execution
of tasks whenever a new task is enqueued and the pool on on-hold tasks is empty. E.g., whenever we
enqueue the first time in the serializer. If this is not given, the global_executor will be used.

If a cont_executor is given, this will be used to enqueue tasks after another task is finished; i.e.,
enqueue the next task. If this is not given, the serializer will use the base_executor if given, or
spawn_continuation_executor.

A serializer in a concurrent system based on tasks is similar to mutexes for traditional synchronization-
based concurrent systems. However, using serializers will not block threads, and if the application has
enough other tasks, throughput doesn’t decrease.

Guarantees:
• no more than 1 task is executed at once.
• the tasks are executed in the order in which they are enqueued.

See executor_t, global_executor, spawn_continuation_executor, n_serializer, rw_serializer

Public Functions

serializer(executor_t base_executor = {}, executor_t cont_executor = {})
Constructor.

If base_executor is not given, global_executor will be used. If cont_executor is not
given, it will use base_executor if given, otherwise it will use spawn_continuation_executor
for enqueueing continuations.
Parameters

• base_executor: Executor to be used to enqueue new tasks
• cont_executor: Executor that enqueues follow-up tasks

The first executor is used whenever new tasks are enqueued, and no task is in the wait list. The
second executor is used whenever a task is completed and we need to continue with the enqueue-
ing of another task. In this case, the default, spawn_continuation_executor tends to work better
than global_executor, as the next task is picked up immediately by the current working thread,
instead of going over the most general flow.

See global_executor, spawn_continuation_executor
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void operator()(task t)
Function call operator.

If there are no tasks in the serializer, this task will be enqueued in the base_executor given
to the constructor (default is global_executor). If there are already other tasks in the serializer, the
given task will be placed in a waiting list. When all the previous tasks are executed, this task will
also be enqueued for execution.
Parameters

• t: The tasks to be enqueued in the serializer

Private Members

std::shared_ptr<impl> impl_
The implementation object of this serializer. We need this to be shared pointer for lifetime issue,
but also to be able to copy the serializer easily.

n_serializer.hpp

namespace concore

namespace v1

class n_serializer : public std::enable_shared_from_this<n_serializer>
#include <n_serializer.hpp> Executor type that allows max N tasks to be executed at a given time.

If the main purpose of other executors is to define where and when tasks will be executed, the purpose
of this executor is to introduce constrains between the tasks enqueued into it.

Given M tasks to be executed, this serializer ensures that there are no more than N tasks executed in
parallel. It serializes the executions of this task. After N tasks start executing all other tasks enqueued
into the serializer are put on hold. As soon as one task is completed a new task is scheduled for
execution.

As this executor doesn’t know to schedule tasks for executor it relies on one or two given executors to
do the scheduling. If a base_executor is given, this will be the one used to schedule for execution
of tasks whenever a new task is enqueued and the pool on on-hold tasks is empty. E.g., whenever we
enqueue the first time in the serializer. If this is not given, the global_executor will be used.

If a cont_executor is given, this will be used to enqueue tasks after another task is finished; i.e.,
enqueue the next task. If this is not given, the serializer will use the base_executor if given, or
spawn_continuation_executor.

An n_serializer in a concurrent system based on tasks is similar to semaphores for traditional
synchronization-based concurrent systems. However, using n_serializer objects will not block
threads, and if the application has enough other tasks, throughput doesn’t decrease.

Guarantees:
• no more than N task is executed at once.
• if N==1, behaves like the serializer class.

See serializer, rw_serializer, executor_t, global_executor, spawn_continuation_executor
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Public Functions

n_serializer(int N, executor_t base_executor = {}, executor_t cont_executor = {})
Constructor.

If base_executor is not given, global_executor will be used. If cont_executor is not
given, it will use base_executor if given, otherwise it will use spawn_continuation_executor
for enqueueing continuations.
Parameters

• N: The maximum number of tasks allowed to be run in parallel
• base_executor: Executor to be used to enqueue new tasks
• cont_executor: Executor that enqueues follow-up tasks

The first executor is used whenever new tasks are enqueued, and no task is in the wait list. The
second executor is used whenever a task is completed and we need to continue with the enqueue-
ing of another task. In this case, the default, spawn_continuation_executor tends to work better
than global_executor, as the next task is picked up immediately by the current working thread,
instead of going over the most general flow.

See global_executor, spawn_continuation_executor

void operator()(task t)
Function call operator.

If there are no more than N tasks in the serializer, this task will be enqueued in the
base_executor given to the constructor (default is global_executor). If there are already
enough other tasks in the serializer, the given task will be placed in a waiting list. When all the
previous tasks are executed, this task will also be enqueued for execution.
Parameters

• t: The tasks to be enqueued in the serializer

Private Members

std::shared_ptr<impl> impl_
The implementation object of this n_serializer. We need this to be shared pointer for lifetime
issue, but also to be able to copy the serializer easily.

rw_serializer.hpp

namespace concore

namespace v1

class rw_serializer
#include <rw_serializer.hpp> Similar to a serializer but allows two types of tasks: READ and WRITE
tasks.

This class is not an executor. It binds together two executors: one for READ tasks and one for WRITE
tasks. This class adds constraints between READ and WRITE threads.

The READ tasks can be run in parallel with other READ tasks, but not with WRITE tasks. The WRITE
tasks cannot be run in parallel neither with READ nor with WRITE tasks.
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This class provides two methods to access to the two executors: read() and write(). The read() executor
should be used to enqueue READ tasks while the write() executor should be used to enqueue WRITE
tasks.

This implementation slightly favors the WRITEs: if there are multiple pending WRITEs and multiple
pending READs, this will execute all the WRITEs before executing the READs. The rationale is
twofold:

• it’s expected that the number of WRITEs is somehow smaller than the number of READs (other-
wise a simple serializer would probably work too)

• it’s expected that the READs would want to read the latest data published by the WRITEs, so they
are aiming to get the latest WRITE

Guarantees:
• no more than 1 WRITE task is executed at once
• no READ task is executed in parallel with other WRITE task
• the WRITE tasks are executed in the order of enqueueing

See reader_type, writer_type, serializer, rw_serializer

Public Functions

rw_serializer(executor_t base_executor = {}, executor_t cont_executor = {})
Constructor.

If base_executor is not given, global_executor will be used. If cont_executor is not
given, it will use base_executor if given, otherwise it will use spawn_continuation_executor
for enqueueing continuations.
Parameters

• base_executor: Executor to be used to enqueue new tasks
• cont_executor: Executor that enqueues follow-up tasks

The first executor is used whenever new tasks are enqueued, and no task is in the wait list. The
second executor is used whenever a task is completed and we need to continue with the enqueue-
ing of another task. In this case, the default, spawn_continuation_executor tends to work better
than global_executor, as the next task is picked up immediately by the current working thread,
instead of going over the most general flow.

See global_executor, spawn_continuation_executor

reader_type reader() const
Returns an executor to enqueue READ tasks.

Return The executor for READ types

writer_type writer() const
Returns an executor to enqueue WRITE tasks.

Return The executor for WRITE types
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Private Members

std::shared_ptr<impl> impl_
Implementation detail shared by both reader and writer types.

class reader_type
#include <rw_serializer.hpp> The type of the executor used for READ tasks.

Objects of this type will be created by rw_serializer to allow enqueueing READ tasks

Public Functions

reader_type(std::shared_ptr<impl> impl)
Constructor. Should only be called by rw_serializer.

void operator()(task t)
Function call operator.

Depending on the state of the parent rw_serializer object this will enqueue the task immediately
(if there are no WRITE tasks), or it will place it in a waiting list to be executed later. The tasks
on the waiting lists will be enqueued once there are no more WRITE tasks.
Parameters

• t: The READ task to be enqueued

Private Members

std::shared_ptr<impl> impl_

class writer_type
#include <rw_serializer.hpp> The type of the executor used for WRITE tasks.

Objects of this type will be created by rw_serializer to allow enqueueing WRITE tasks

Public Functions

writer_type(std::shared_ptr<impl> impl)
Constructor. Should only be called by rw_serializer.

void operator()(task t)
Function call operator.

Depending on the state of the parent rw_serializer object this will enqueue the task immedi-
ately (if there are no other tasks executing), or it will place it in a waiting list to be executed
later. The tasks on the waiting lists will be enqueued, in order, one by one. No new READ
tasks are executed while we have WRITE tasks in the waiting list.
Parameters

• t: The WRITE task to be enqueued
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Private Members

std::shared_ptr<impl> impl_

1.3.4 Data

data/concurrent_queue.hpp

namespace concore

namespace v1

template<typename T, queue_type conc_type = queue_type::multi_prod_multi_cons>
class concurrent_queue

#include <concurrent_queue.hpp> Concurrent double-ended queue implementation.

Based on the conc_type parameter, this can be:

• single-producer, single-consumer

• single-producer, multi-consumer

• multi-producer, single-consumer

• multi-producer, multi-consumer

Template Parameters

• T: The type of elements to store

• conc_type: The expected concurrency for the queue

Note, that the implementation for some of these alternatives might coincide.

The queue, has 2 ends:

• the back: where new element can be added

• the front: from which elements can be extracted

The queue has only 2 operations corresponding to pushing new elements into the queue and popping
elements out of the queue.

See queue_type, push(), pop()

Public Types

template<>
using value_type = T

The value type of the concurrent queue.

30 Chapter 1. Table of content



concore

Public Functions

concurrent_queue()
Default constructor. Creates a valid empty queue.

concurrent_queue(const concurrent_queue&)
Copy constructor is DISABLED.

const concurrent_queue &operator=(const concurrent_queue&)
Copy assignment is DISABLED.

void push(T &&elem)
Pushes one element in the back of the queue.

This ensures that is thread-safe with respect to the chosen queue_type concurrency policy.
Parameters

• elem: The element to be added to the queue

See try_pop()

bool try_pop(T &elem)
Try to pop one element from the front of the queue.

Try to pop one element from the front of the queue. Returns false if the queue is empty. This
is considered the default popping operation. If the queue is empty, this will return false and not
touch the given parameter. If the queue is not empty, it will extract the element from the front
of the queue and store it in the given parameter.
Return True if an element was popped; false otherwise.
Parameters

• elem: [out] Location where to put the popped element
This ensures that is thread-safe with respect to the chosen queue_type concurrency policy.

See push()

Private Types

template<>
using node_ptr = detail::node_ptr

Private Members

detail::concurrent_queue_data queue_
The data holding the actual queue.

detail::node_factory<T> factory_
Object that creates nodes, and keeps track of the freed nodes.
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data/concurrent_queue_type.hpp

namespace concore

namespace v1

Enums

enum queue_type
Queue type, based o the desired level of concurrency for producers and consumers.

Please note that this express only the desired type. It doesn’t mean that implementation will be
strictly obey the policy. The implementation can be more conservative and fall-back to less optimal
implementation. For example, the implementation can always use the multi_prod_multi_cons type,
as it includes all the constraints for all the other types.

Values:

single_prod_single_cons
Single-producer, single-consumer concurrent queue.

single_prod_multi_cons
Single-producer, multiple-consumer concurrent queue.

multi_prod_single_cons
Multiple-producer, single-consumer concurrent queue.

multi_prod_multi_cons
Multiple-producer, multiple-consumer concurrent queue.

default_type = multi_prod_multi_cons
The default queue type. Multiple-producer, multiple-consumer concurrent queue.

1.3.5 Low level

low_level/spin_backoff.hpp

Defines

CONCORE_LOW_LEVEL_SHORT_PAUSE()
Pauses the CPU for a short while.

The intent of this macro is to pause the CPU, without consuming energy, while waiting for some other condition
to happen. The pause should be sufficiently small so that the current thread will not give up its work quanta.

This pause should be smaller than the pause caused by CONCORE_LOW_LEVEL_YIELD_PAUSE().

This is used in spin implementations that are waiting for certain conditions to happen, and it is expected that
these condition will become true in a very short amount of time.

The implementation of this uses platform-specific instructions.

See CONCORE_LOW_LEVEL_YIELD_PAUSE(), concore::v1::spin_backoff
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CONCORE_LOW_LEVEL_YIELD_PAUSE()
Pause that will make the current thread yield its CPU quanta.

This is intended to be a longer pause than CONCORE_LOW_LEVEL_SHORT_PAUSE(). It is used in spin
algorithms that wait for some condition to become true, but apparently that condition does not become true soon
enough. Instead of blocking the CPU waiting on this condition, we give up the CPU quanta to be used by other
threads; hopefully, by running other threads, that condition can become true.

See CONCORE_LOW_LEVEL_SHORT_PAUSE(), concore::v1::spin_backoff

namespace concore

namespace v1

class spin_backoff
#include <spin_backoff.hpp> Class that can spin with exponential backoff.

This is intended to be used for implement spin-wait algorithms. It is assumed that the thread that is
calling this will wait on some resource from another thread, and the other thread should release that
resource shortly. Instead of giving up the CPU quanta, we prefer to spin a bit until we can get the
resource

This will spin with an exponential long pause; after a given threshold this will just yield the CPU
quanta of the current thread.

See concore::spin_mutex

Public Functions

void pause()
Pauses a short while.

Calling this multiple times will pause more and more. In the beginning the pauses are short,
without yielding the CPU quanta of the current thread. But, after a threshold this attempts to
give up the CPU quanta for the current executing thread.

Private Members

int count_ = {1}
The count of ‘pause’ instructions we should make.

low_level/spin_mutex.hpp

namespace concore

namespace v1

class spin_mutex
#include <spin_mutex.hpp> Mutex class that uses CPU spinning while attempting to take the lock.
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For mutexes that protect very small regions of code, a spin_mutex can be much faster than a tradi-
tional mutex. Instead of taking a lock, this will spin on the CPU, trying to avoid yielding the CPU
quanta.

This uses an exponential backoff spinner. If after some time doing small waits it cannot enter the
critical section, it will yield the CPU quanta of the current thread.

Spin mutexes should only be used to protect very-small regions of code; a handful of CPU instruc-
tions. For larger scopes, a traditional mutex may be faster; but then, think about using serializer to
avoid mutexes completely.

See spin_backoff

Public Functions

spin_mutex()
Default constructor.

Constructs a spin mutex that is not acquired by any thread.

spin_mutex(const spin_mutex&)
Copy constructor is DISABLED.

spin_mutex &operator=(const spin_mutex&)
Copy assignment is DISABLED.

void lock()
Acquires ownership of the mutex.

Uses a spin_backoff to spin while waiting for the ownership to be free. When exiting this
function the mutex will be owned by the current thread.

An unlock() call must be made for each call to lock().

See try_lock(), unlock()

bool try_lock()
Tries to lock the mutex; returns false if the mutex is not available.

This is similar to lock() but does not wait for the mutex to be free again. If the mutex is acquired
by a different thread, this will return false.
Return True if the mutex ownership was acquired; false if the mutex is busy
An unlock() call must be made for each call to this method that returns true.

See lock(), unlock()

void unlock()
Releases the ownership on the mutex.

This needs to be called for every lock() and for every try_lock() that returns true. It should not
be called without a matching lock() or try_lock().

See lock(), try_lock()
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Private Members

std::atomic_flag busy_ = ATOMIC_FLAG_INIT
True if the spin mutex is taken.

low_level/shared_spin_mutex.hpp

namespace concore

namespace v1

class shared_spin_mutex
#include <shared_spin_mutex.hpp> A shared (read-write) mutex class that uses CPU spinning.

For mutexes that protect very small regions of code, a shared_spin_mutex can be much faster than a
traditional shared_mutex. Instead of taking a lock, this will spin on the CPU, trying to avoid yielding
the CPU quanta.

The ownership of the mutex can fall in 3 categories:

• no ownership no thread is using the mutex

• exclusive ownership only one thread can access the mutex, exclusively (WRITE operations)

• shared ownership multiple threads can access the mutex in a shared way (READ operations)

While one threads acquires exclusive ownership, no other thread can have shared ownership. Multi-
ple threads can have a shared ownership over the mutex.

This implementation favors exclusive ownership versus shared ownership. If a thread is waiting for
exclusive ownership and one thread is waiting for the shared ownership, the thread that waits on the
exclusive ownership will be granted the ownership first.

This uses an exponential backoff spinner. If after some time doing small waits it cannot enter the
critical section, it will yield the CPU quanta of the current thread.

Spin shared mutexes should only be used to protect very-small regions of code; a handful of CPU
instructions. For larger scopes, a traditional shared mutex may be faster; but then, think about using
rw_serializer to avoid mutexes completely.

See spin_mutex, spin_backoff , rw_serializer

Public Functions

shared_spin_mutex()
Default constructor.

Constructs a shared spin mutex that is in the no ownership state.

shared_spin_mutex(const shared_spin_mutex&)
Copy constructor is DISABLED.

shared_spin_mutex &operator=(const shared_spin_mutex&)
Copy assignment is DISABLED.
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void lock()
Acquires exclusive ownership of the mutex.

This will put the mutex in the exclusive ownership case. If other threads have exclusive or
shared ownership, this will wait until those threads are done

Uses a spin_backoff to spin while waiting for the ownership to be free. When exiting this
function the mutex will be exclusively owned by the current thread.

An unlock() call must be made for each call to lock().

See try_lock(), unlock(), lock_shared()

bool try_lock()
Tries to acquire exclusive ownership; returns false it fails the acquisition.

This is similar to lock() but does not wait for the mutex to be free again. If the mutex is acquired
by a different thread, or if the mutex has shared ownership this will return false.
Return True if the mutex exclusive ownership was acquired; false if the mutex is busy
An unlock() call must be made for each call to this method that returns true.

See lock(), unlock()

void unlock()
Releases the exclusive ownership on the mutex.

This needs to be called for every lock() and for every try_lock() that returns true. It should not
be called without a matching lock() or try_lock().

See lock(), try_lock()

void lock_shared()
Acquires shared ownership of the mutex.

This will put the mutex in the shared ownership case. If other threads have exclusive ownership,
this will wait until those threads are done.

Uses a spin_backoff to spin while waiting for the ownership to be free. When exiting this
function the mutex will be exclusively owned by the current thread.

An unlock_shared() call must be made for each call to lock().

See try_lock_shared(), unlock_shared(), lock()

bool try_lock_shared()
Tries to acquire shared ownership; returns false it fails the acquisition.

This is similar to lock_shared() but does not wait for the mutex to be free again. If the mutex is
exclusively acquired by a different thread this will return false.
Return True if the mutex shared ownership was acquired; false if the mutex is busy
An unlock_shared() call must be made for each call to this method that returns true.

See lock_shared(), unlock_shared()

void unlock_shared()
Releases the sjared ownership on the mutex.

This needs to be called for every lock_shared() and for every try_lock_shared() that returns true.
It should not be called without a matching lock_shared() or try_lock_shared().

See lock_shared(), try_lock_shared()
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Private Members

std::atomic<uintptr_t> lock_state_ = {0}
The state of the shared spin mutex. The first 2 LSB will indicate whether we have a writer or
we are having a pending writer. The rest of the bits indicates the count of the readers.

Private Static Attributes

constexpr uintptr_t has_writer_ = 1
Bitmask to check if we have a writer acquiring the mutex.

constexpr uintptr_t has_writer_pending_ = 2
Bitmask to check if somebody tries to acquire the mutex as writer.

constexpr uintptr_t has_writer_or_pending_ = has_writer_ | has_writer_pending_
Bitmask indicating that we have a writer, or a pending writer.

constexpr uintptr_t readers_ = ~(has_writer_or_pending_)
Bitmask with that capture all the readers that we have.

constexpr uintptr_t is_busy_ = (has_writer_ | readers_)
Bitmask indicating whether we have a writer or readers.

constexpr uintptr_t reader_increment_ = 4
The increment that we need to use for each reader.

low_level/semaphore.hpp

namespace concore

namespace v1

class binary_semaphore
#include <semaphore.hpp> A semaphore that has two states: SIGNALED and WAITING.

It’s assumed that the user will not call signal() multiple times.

It may be implemented exactly as a semaphore, but on some platforms it can be implemented more
efficiently.

See semaphore

Public Functions

binary_semaphore()

~binary_semaphore()
Destructor.

binary_semaphore(const binary_semaphore&)
Copy constructor is DISABLED.

void operator=(const binary_semaphore&)
Copy assignment is DISABLED.
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void wait()
Wait for the semaphore to be signaled.

This will put the binary semaphore in the WAITING state, and wait for a thread to signal it. The
call will block until a corresponding thread will signal it.

See signal(0)

void signal()
Signal the binary semaphore.

Puts the semaphore in the SIGNALED state. If there is a thread that waits on the semaphore it
will wake it.

class semaphore
#include <semaphore.hpp> The classic “semaphore” synchronization primitive.

It atomically maintains an internal count. The count can always be increased by calling signal(),
which is always a non-blocking call. When calling wait(), the count is decremented; if the count is
still positive the call will be non-blocking; if the count goes below zero, the call to wait() will block
until some other thread calls signal().

See binary_semaphore

Public Functions

semaphore(int start_count = 0)
Constructs a new semaphore instance.

Parameters
• start_count: The value that the semaphore count should have at start

~semaphore()
Destructor.

semaphore(const semaphore&)
Copy constructor is DISABLED.

void operator=(const semaphore&)
Copy assignment is DISABLED.

void wait()
Decrement the internal count and wait on the count to be positive.

If the count of the semaphore is positive this will decrement the count and return immediately.
On the other hand, if the count is 0, it wait for it to become positive before decrementing it and
returning.

See signal()

void signal()
Increment the internal count.

If there are at least one thread that is blocked inside a wait() call, this will wake up a waiting
thread.

See wait()
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low_level/concurrent_dequeue.hpp

namespace concore

namespace v1

template<typename T>
class concurrent_dequeue

#include <concurrent_dequeue.hpp> Concurrent double-ended queue implementation, for a small
number of elements.

This will try to preallocate a vector with enough elements to cover the most common cases. Opera-
tions on the concurrent queue when we have few elements are fast: we only make atomic operations,
no memory allocation. We only use spin mutexes in this case.

Template Parameters

• T: The type of elements to store

If we have too many elements in the queue, we switch to a slower implementation that can grow to
a very large number of elements. For this we use regular mutexes.

Note 1: when switching between fast and slow, the FIFO ordering of the queue is lost.

Note 2: for efficiency reasons, the element size should be at least as a cache line (otherwise we can
have false sharing when accessing adjacent elements)

Note 3: we expect very-low contention on the front of the queue, and some contention at the end of
the queue. And of course, there will be more contention when the queue is empty or close to empty.

Note 4: we expect contention over the atomic that stores the begin/end position in the fast queue

The intent of this queue is to hold tasks in the task system. There, we typically add any enqueued
tasks to the end of the queue. The tasks that are spawned while working on some task are pushed to
the front of the queue. The popping of the tasks is typically done on the front of the queue, but when
stealing tasks, popping is done from the back of the queue trying to maximize locality for nearby
tasks.

Public Types

template<>
using value_type = T

Public Functions

concurrent_dequeue(size_t expected_size)
Constructs a new instance of the queue, with the given preallocated size.

If we ever add more elements in our queue than the given limit, our queue starts to become
slower.
Parameters

• [in] expected_size: How many elements to preallocate in our fast queue.
The number of reserved elements should be bigger than the expected concurrency.

void push_back(T &&elem)
Pushes one element in the back of the queue. This is considered the default pushing operation.
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void push_front(T &&elem)
Push one element to the front of the queue.

bool try_pop_front(T &elem)
Try to pop one element from the front of the queue. Returns false if the queue is empty. This is
considered the default popping operation.

bool try_pop_back(T &elem)
Try to pop one element from the back of the queue. Returns false if the queue is empty.

void unsafe_clear()
Clears the queue.

Private Members

detail::bounded_dequeue<T> fast_deque_
The fast dequeue implementation; uses a fixed number of elements.

std::deque<T> slow_access_elems_
Deque of elements that have slow access; we use this if we go beyond our threshold.

std::mutex bottleneck_
Protects the access to slow_access_elems_.

std::atomic<int> num_elements_slow_ = {0}
The number of elements stored in slow_access_elems_; used it before trying to take the lock.
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